Все о тюнинге авто

Знакопеременный ряд называется абсолютно сходящимся если. Знакопеременные ряды

Ряд называется знакопеременным , если среди его членов имеются как положительные , так и отрицательные.

Знакочередующиеся ряды – частный случай знакопеременного ряда.

Теорема 1.

Если знакопеременный ряд (1)

таков, что ряд, составленный из абсолютных величин его членов

(2)

сходится, то и данный знакопеременный ряд также сходится.

Данная теорема позволяет судить о сходимости некоторых знакопеременных рядов. Исследование в данном случае сводится к исследованию ряда с положительными членами.

Данная теоремаявляется достаточным признаком сходимости знакочередующегося ряда, но не необходимым: существуют такие знакопеременные ряды, которые сами сходятся, но ряды, составленные из абсолютных величин их членов, расходятся.

Определение:

Знакопеременный ряд (1)

называется абсолютно сходящимся , если сходится ряд, составленный из абсолютных величин его членов: (2)

Если же знакопеременный ряд (1) сходится, а ряд (2) расходится, то данный знакопеременный ряд(1) называется условно или неабсолютно сходящимся рядом.

Теорема 2:

Если ряд сходится абсолютно, то он остается абсолютно сходящимся при любой перестановке его членов. При этом сумма ряда не зависит от порядка его членов.

Теорема 3:

Если ряд сходится условно, то какое бы мы ни задали число А , можно так переставить члены этого ряда, чтобы его сумма оказалась в точности равной А. Более того, можно так переставить члены условно сходящегося ряда, что ряд, полученный после перестановки, окажется расходящимся.

Пример:

Исследовать числовой ряд

Решение:

Исследуем данный числовой знакочередующийся ряд на абсолютную и условную сходимость, для чего составим ряд из абсолютных величин членов знакочередующегося ряда:

Исследуем полученный числовой ряд с положительными членами на сходимость, воспользовавшись предельным признаком сравнения. Сравним данный ряд с обобщенным гармоническим рядом . Так как , то ряд сходится.

Следовательно, оба ряда вместе сходятся.

Так как числовой ряд из абсолютных величин членов нашего знакочередующегося ряда сходится, то знакочередующийся числовой ряд сходится абсолютно.

Ответ: Ряд сходится абсолютно.

Пример .

Исследовать числовой ряд на абсолютную и условную сходимость.

Решение:

Знакочередующийся числовой ряд.

Воспользуемся признаком Лейбница:

То есть члены ряда монотонно убывают по абсолютной величине.

Следовательно, знакочередующийся ряд сходится по признаку Лейбница.

Составим ряд из модулей членов нашего знакочередующегося ряда:

Исследуем полученный числовой ряд с положительными членами на сходимость, воспользовавшись предельным признаком сравнения. Сравним данный ряд с расходящимся гармоническим рядом .

Следовательно, оба ряда вместе расходятся.

Таким образом, сам знакочередующийся ряд сходится, а ряд из его модулей расходится. Следовательно, наш знакочередующийся числовой ряд сходится условно.

Ответ: Ряд сходится условно.

Ряд (1) называется знакопеременным , если среди его членов имеются как положительные, так и отрицательные члены.

Теорема (достаточный признак сходимости знакопеременного ряда ). Пусть задан знакопеременный ряд

a 1 + a 2 + … +a n + …. (13)

Если ряд, составленный из абсолютных величин членов данного ряда

|a 1 | + |a 2 | + … + |a n | +… , (14)

сходится, то сходится и данный ряд (13).

Ряд (13) называется абсолютно сходящимся, если сходится ряд (14), составленный из абсолютных величин членов ряда (13). Если же знакопеременный ряд (13) сходится, а ряд (14) расходится, то ряд (13) называется условно или неабсолютно сходящимся .

a 1 – a 2 + a 3 – a 4 +… + a n + …., (15)

где , называется знакочередующимся.

Теорема (признак Лейбница ). Знакочередующийся ряд (15) сходится, если абсолютные величины его членов не возрастают, а общий член стремится к нулю, т.е. если выполняются следующие два условия:

Замечание 1 . При решении задач на исследование сходимости ряда полезно знать особенности поведения следующих рядов:

1. Ряд, составленный из членов геометрической прогрессии : сходится при и расходится при , q – знаменатель прогрессии;

2. Обобщенный гармонический ряд : сходится при и расходится при . В частном случае () получаем гармонический ряд , который расходится.

Замечание 2. Если ряд (15) удовлетворяет условиям признака Лейбница, то ошибка, совершаемая при замене S на S n , не превосходит по абсолютной величине первого из отброшенных членов. Это свойство используется для приближенных вычислений.

Задание 1

Решение. Так как (второй замечательный предел), то в силу следствия из необходимого признака сходимости ряда получаем, что данный ряд расходится.

Задание 2 .

Решение . Выясним поведение данного ряда с помощью признака сравнения. Для этого сравним его с рядом (это – обобщенный гармонический ряд, который сходится, так как ). Имеем:

и, следовательно, из сходимости ряда по признаку сравнения следует сходимость и данного ряда.

Задание 3 . Исследовать на сходимость ряд .

Решение. Выясним поведение данного ряда с помощью предельного признака сравнения. Сравним данный ряд с рядом (это - гармонический ряд, который расходится). Имеем:

и, следовательно, ряды и данный ведут себя одинаково. Таким образом, по предельному признаку сравнения исследуемый ряд расходится.

Задание 4. Исследовать на сходимость ряд .

Решение. Применим к данному ряду признак Даламбера. Имеем:

Тогда . Следовательно, по признаку Даламбера данный ряд сходится.



Задание 5. Исследовать на сходимость ряд .

Решение . Применим к данному ряду признак Коши. Имеем:

и, следовательно, в силу признака Коши данный ряд сходится.

Задание 6 . Исследовать на сходимость ряд .

Решение . Применим к данному ряду интегральный признак Коши. Имеем:

Для исследования исходного ряда на условную сходимость применим к нему признак Лейбница. Имеем:

1) и очевидно, что

Следовательно, условия признака Лейбница выполнены. Таким образом, исходный ряд сходится условно.

Своим внеочередным появлением данный раздел обязан многим и многим авторам, читая труды которых так и хотелось запустить оными трудами в самих писателей. Собственно, я планировал выложить данную тему полностью лишь по мере её окончательной готовности, однако ввиду слишком большого количества вопросов по ней, изложу некоторые моменты сейчас. Впоследствии материал будет дополнен и расширен. Начнём с определений.

Ряд вида $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n>0$, называется знакочередующимся.

Знаки членов знакочередующегося ряда строго чередуются:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=u_1-u_2+u_3-u_4+u_5-u_6+u_7-u_8+\ldots $$

Например, $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ - знакочередующийся ряд. Бывает, что строгое чередование знаков начинается не с первого элемента, однако для исследования на сходимость это несущественно.

Почему чередование знаков не с первого элемента является несущественным? показать\скрыть

Дело в том, что среди свойств числовых рядов есть утверждение, которое позволяет нам отбрасывать "лишние" члены ряда. Вот это свойство:

Ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится тогда и только тогда, когда сходится любой из его остатков $r_n=\sum\limits_{k=n+1}^{\infty}u_k$. Отсюда следует, что отбрасывание или добавление к некоторому ряду конечного количества членов не изменяет сходимости ряда.

Пусть нам задан некий знакочередующийся ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, и пусть для этого ряда выполнено первое условие признака Лейбница, т.е. $\lim_{n\to{\infty}}u_n=0$. Однако второе условие, т.е. $u_n≥u_{n+1}$, выполняется начиная с некоего номера $n_0\in{N}$. Если $n_0=1$, то мы получаем обычную формулировку второго условия признака Лейбница, посему ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ будет сходиться. Если же $n_0>1$, то разобьём ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ на две части. В первую часть выделим все те элементы, номера которых меньше $n_0$:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=\sum\limits_{n=1}^{n_0-1}(-1)^{n+1}u_n+\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n $$

Для ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ выполнены оба условия признака Лейбница, поэтому ряд $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ сходится. Так как сходится остаток, то будет сходиться и исходный ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$.

Таким образом, совершенно неважно, выполнено ли второе условие признака Лейбница, начиная с первого, или же с тысячного элемента - ряд всё равно будет сходиться.

Отмечу, что признак Лейбница является достаточным, но не необходимым условием сходимости знакочередующихся рядов. Иными словами, выполнение условий признака Лейбница гарантирует сходимость ряда, но невыполнение оных условий не гарантирует ни сходимости, ни расходимости. Разумеется, невыполнение первого условия, т.е. случай $\lim_{n\to{\infty}}u_n\neq{0}$, означает расходимость ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$, однако невыполнение второго условия может произойти как для сходящегося, так и расходящегося ряда.

Так как знакочередующиеся ряды частенько встречаются в стандартных типовых расчётах, то я составил схему, по которой можно исследовать на сходимость стандартный знакочередующийся ряд.

Разумеется, можно напрямую применять признак Лейбница, минуя проверку сходимости ряда из модулей. Однако для стандартных учебных примеров проверка ряда из модулей необходима, так как большинство авторов типовых расчетов требуют не просто выяснить, сходится ряд или нет, а определить характер сходимости (условная или абсолютная). Перейдем к примерам.

Пример №1

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ на сходимость.

Для начала выясним, действительно ли данный ряд знакочередующийся. Так как $n≥1$, то $4n-1≥3>0$ и $n^2+3n≥4>0$, т.е. при всех $n\in{N}$ имеем $\frac{4n-1}{n^2+3n}>0$. Таким образом, заданный ряд имеет вид $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n=\frac{4n-1}{n^2+3n}>0$, т.е. рассматриваемый ряд - знакочередующийся.

Обычно такая проверка делается устно, однако пропускать её крайне нежелательно: ошибки в типовых расчётах нередки. Часто бывает, что знаки членов заданного ряда начинают чередоваться не с первого члена ряда. В этом случае можно отбросить "мешающие" члены ряда и исследовать сходимость остатка (см. примечание в начале этой страницы).

Итак, нам задан знакочередующийся ряд. Будем следовать вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right| =\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n} $$

Проверим, сходится ли составленный ряд из модулей. Применим признак сравнения . Так как при всех $n\in{N}$ имеем $4n-1=3n+n-1≥3n$ и $n^2+3n≤n^2+3n^2=4n^2$, то:

$$ \frac{4n-1}{n^2+3n}≥ \frac{3n}{4n^2}=\frac{3}{4}\cdot\frac{1}{n} $$

Гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, поэтому будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{3}{4}\cdot\frac{1}{n}\right)$. Следовательно, согласно признаку сравнения ряд $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n}$ расходится. Обозначим $u_n=\frac{4n-1}{n^2+3n}$ и проверим, выполнены ли условия признака Лейбница для исходного знакочередующегося ряда. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{4n-1}{n^2+3n} =\lim_{n\to{\infty}}\frac{\frac{4}{n}-\frac{1}{n^2}}{1+\frac{3}{n}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. Немалое количество авторов предпочитает записать несколько первых членов ряда, а затем сделать вывод, что неравенство $u_n≥u_{n+1}$ выполнено.

Иными словами, это "доказательство" для данного ряда имело бы такой вид: $\frac{2}{3}≤\frac{5}{8}≤\frac{8}{15}≤\ldots$. После сравнения нескольких первых членов делается вывод: для остальных членов неравенство сохранится, каждый последующий будет не более предыдущего. Откуда взялся этот "метод доказательства" я не знаю, но он ошибочен. Например, для последовательности $v_n=\frac{10^n}{n!}$ получим такие первые члены: $v_1=10$, $v_2=50$, $v_3=\frac{500}{3}$, $v_4=\frac{1250}{3}$. Как видите, они возрастают, т.е., если ограничиться сравнением нескольких первых членов, то можно сделать вывод, что $v_{n+1}>v_n$ для всех $n\in{N}$. Однако такой вывод будет категорически неверным, так как начиная с $n=10$ элементы последовательности будут убывать.

Как же доказать неравенство $u_n≥u_{n+1}$? В общем случае для этого есть несколько способов. Самый простой в нашем случае - рассмотреть разность $u_n-u_{n+1}$ и выяснить её знак. В следующем примере рассмотрим иной способ: посредством доказательства убывания соответствующей функции.

$$ u_n-u_{n+1} =\frac{4n-1}{n^2+3n}-\frac{4(n+1)-1}{(n+1)^2+3(n+1)} =\frac{4n-1}{n^2+3n}-\frac{4n+3}{n^2+5n+4}=\\ =\frac{(4n-1)\cdot\left(n^2+5n+4\right)-\left(n^2+3n\right)\cdot(4n+3)}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)} =\frac{4n^2+2n-4}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)}. $$

Так как $n≥1$, то $4n^2-4≥0$, откуда имеем $4n^2+2n-4>0$, т.е. $u_n-u_{n+1}>0$, $u_n>u_{n+1}$. Бывает, конечно, что неравенство $u_n≥u_{n+1}$ выполняется не с первого члена ряда, однако это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №2

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}$ на сходимость.

Для начала рассмотрим выражение $\frac{5n-4}{\sqrt{2n^3-1}}$. Стоит произвести небольшую проверку корректности условия. Дело в том, что очень часто в условиях стандартных типовых расчётов можно встретить ошибки, когда подкоренное выражение является отрицательным, или же в знаменателе при некоторых значениях $n$ появляется ноль.

Дабы избежать таких неприятностей, произведём простенькое предварительное исследование. Так как при $n≥1$ имеем $2n^3≥2$, то $2n^3-1≥1$, т.е. выражение под корнем не может быть отрицательным или равняться нулю. Следовательно, условие вполне корректно. Выражение $\frac{5n-4}{\sqrt{2n^3-1}}$ определено при всех $n≥1$.

Добавлю, что при $n≥1$ верно неравенство $\frac{5n-4}{\sqrt{2n^3-1}}>0$, т.е. нам задан знакочередующийся ряд. Будем исследовать его согласно вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right| =\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}} $$

Проверим, сходится ли ряд, составленный из модулей членов заданного ряда. Применим признак сравнения . В решении предыдущего примера мы применяли первый признак сравнения. Здесь же, сугубо для разнообразия, применим второй признак сравнения (признак сравнения в предельной форме). Сравним ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$ с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$:

$$ \lim_{n\to\infty}\frac{\frac{5n-4}{\sqrt{2n^3-1}}}{\frac{1}{\sqrt{n}}} =\lim_{n\to\infty}\frac{5n\sqrt{n}-4\sqrt{n}}{\sqrt{2n^3-1}} =\lim_{n\to\infty}\frac{\frac{5n\sqrt{n}}{n\sqrt{n}}-\frac{4\sqrt{n}}{n\sqrt{n}}}{\sqrt{\frac{2n^3-1}{n^3}}} \lim_{n\to\infty}\frac{5-\frac{4}{n}}{\sqrt{2-\frac{1}{n^3}}} =\frac{5}{\sqrt{2}}. $$

Так как $\frac{5}{\sqrt{2}}\neq{0}$ и $\frac{5}{\sqrt{2}}\neq\infty$, то одновременно с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$.

Итак, абсолютной сходимости заданный знакочередующийся ряд не имеет. Обозначим $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ и проверим, выполнены ли условия признака Лейбница. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{5n-4}{\sqrt{2n^3-1}} =\lim_{n\to{\infty}}\frac{\frac{5n}{n^{\frac{3}{2}}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{\frac{2n^3-1}{n^3}}} =\lim_{n\to{\infty}}\frac{\frac{5}{\sqrt{n}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{2-\frac{1}{n^3}}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. В прошлом примере мы рассмотрели один из способов доказательства этого неравенства: посредством выяснения знака разности $u_n-u_{n+1}$. В этот раз обратимся к иному способу: вместо $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ рассмотрим функцию $y(x)=\frac{5x-4}{\sqrt{2x^3-1}}$ при условии $x≥1$. Отмечу, что поведение данной функции при условии $x<1$ нам совершенно безразлично.

Наша цель состоит в том, чтобы доказать невозрастание (или убывание) функции $y(x)$. Если мы докажем, что функция $y(x)$ является невозрастающей, то для всех значений $x_2>x_1$ будем иметь $y(x_1)≥y(x_2)$. Полагая $x_1=n$ и $x_2=n+1$ получим, что из неравенства $n+1>n$ последует истинность неравенства $y(n)≥y(n+1)$. Так как $y(n)=u_n$, то неравенство $y(n)≥y(n+1)$ есть то же самое, что и $u_{n}≥u_{n+1}$.

Если же мы покажем, что $y(x)$ - убывающая функция, то из неравенства $n+1>n$ последует истинность неравенства $y(n)>y(n+1)$, т.е. $u_{n}>u_{n+1}$.

Найдём производную $y"(x)$ и выясним её знак для соответствующих значений $x$.

$$ y"(x)=\frac{(5x-4)"\cdot\sqrt{2x^3-1}-(5x-4)\cdot\left(\sqrt{2x^3-1}\right)"}{\left(\sqrt{2x^3-1}\right)^2} =\frac{5\cdot\sqrt{2x^3-1}-(5x-4)\cdot\frac{1}{2\sqrt{2x^3-1}}\cdot{6x^2}}{2x^3-1}=\\ =\frac{5\cdot\left(2x^3-1\right)-(5x-4)\cdot{3x^2}}{\left(2x^3-1\right)^{\frac{3}{2}}} =\frac{-5x^3+12x^2-5}{\left(2x^3-1\right)^{\frac{3}{2}}} $$

Полагаю, очевидно, что при достаточно больших положительных значениях $x≥1$ многочлен в знаменателе будет меньше нуля, т.е. $-5x^3+12x^2-5<0$. Эту "очевидность" несложно обосновать формально - если вспомнить курс алгебры. Дело в том, что согласно лемме о модуле старшего члена, при достаточно больших значениях $|x|$ знак многочлена совпадает с знаком его старшего члена. Адаптируясь к нашей задаче получаем, что существует такое число $c≥1$, то для всех $x≥c$ будет верным неравенство $-5x^3+12x^2-5<0$. В принципе, существования такого числа $c$ уже вполне достаточно для дальнейшего решения задачи.

Однако давайте подойдём к вопросу менее формально. Дабы не привлекать лишних лемм из алгебры, просто грубо оценим значение выражения $-5x^3+12x^2-5$. Учтём $-5x^3+12x^2-5=x^2(-5x+12)-5$. При $x≥3$ имеем $-5x+12<0$, посему $x^2(-5x+12)-5<0$.

Таким образом, при $x≥3$ имеем $y"(x)<0$, т.е. функция $y(x)$ убывает. А это, в свою очередь, означает, что при $n≥3$ верно неравенство $u_n>u_{n+1}$, т.е. второе условие признака Лейбница выполнено. Разумеется, мы показали выполнение второго условия не с $n=1$, а с $n=3$, но это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №3

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ на сходимость.

Данный пример не представляет большого интереса, поэтому я распишу его коротко. Нам задан знакочередующийся ряд, который вновь станем исследовать по . Составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right| =\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n} $$

Применим признак Д"Аламбера . Обозначая $u_n=\frac{3n+4}{2^n}$, получим $u_{n+1}=\frac{3n+7}{2^{n+1}}$.

$$ \lim_{n\to\infty}\frac{u_{n+1}}{u_{n}} =\lim_{n\to\infty}\frac{\frac{3n+7}{2^{n+1}}}{\frac{3n+4}{2^n}} =\frac{1}{2}\lim_{n\to\infty}\frac{3n+7}{3n+4} =\frac{1}{2}\lim_{n\to\infty}\frac{3+\frac{7}{n}}{3+\frac{4}{n}} =\frac{1}{2}\cdot{1}=\frac{1}{2}. $$

Так как $\frac{1}{2}<1$, то согласно признаку Д"Аламбера ряд $\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n}$ сходится. Из сходимости ряда $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right|$, что ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ сходится, причём сходится абсолютно.

Отмечу, что для решения заданного примера нам не потребовался признак Лейбница. Именно поэтому удобно сперва проверить сходимость ряда из модулей, а потом уже, при необходимости, исследовать сходимость исходного знакочередующегося ряда.

Ответ : ряд сходится абсолютно.

Знакочередующиеся ряды. Признак Лейбница.
Абсолютная и условная сходимость

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус» (как вы помните ещё с урока о числовых последовательностях , эта штуковина называется «мигалкой»). Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю: , причём, убывают монотонно.

Если выполнены эти условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначают одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю:

// Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). Кроме того, члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим.

Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1

В общий член ряда входит множитель , и это наталкивает на естественную мысль проверить выполнение условий признака Лейбница:

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Здесь нужно решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю, и из этого автоматически следует его расходимость – по той причине, что предела не существует *, то есть, не выполнен необходимый признак сходимости ряда .

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам , которые не менее монотонны и однообразны интересны.

До сих пор мы изучали только ряды, все члены которых были положительными . Теперь мы перейдем к рассмотрению рядов, содержащих как положительные, так и отрицательные члены. Такие ряды называются знакопеременными.

В качестве примера знакопеременного ряда приведем ряд

Изучение знакопеременных рядов мы начнем с частного случая, так называемых знакочередующихся рядов, т. е. рядов, в которых за каждым положительным членом следует отрицательный и за каждым отрицательным членом следует положительный.

Обозначая через - абсолютные величины членов ряда и считая, что первый член положителен, знакочередующийся ряд запишем следующим образом:

Для знакочередующихся рядов имеет место достаточный признак сходимости Лейбница.

Признак Лейбница. Если в знакочередующемся ряде (34) абсолютные величины членов убывают:

и общий член ряда стремится к нулю: , то ряд сходится и его сумма не превосходит первого члена ряда.

Доказательство. Рассмотрим частичную сумму четного числа членов ряда

Сгруппируем члены попарно:

Так как по условию абсолютные величины членов ряда убывают, то все разности в скобках положительны и, следовательно, сумма положительна и возрастает при увеличении .

Запишем теперь группируя члены иным образом:

Сумма в квадратных скобках будет также положительной. Поэтому для любого значения . Таким образом, последовательность четных частичных сумм возрастает с увеличением , оставаясь при этом ограниченной. Следовательно, имеет предел

При этом, так как то ясно, что Рассмотрим теперь сумму нечетного числа членов:

При имеем

так как по условию и, следовательно, .

Таким образом, частичные суммы как четного, так и нечетного числа членов имеют общий предел S. Это означает, что вообще , т. е. ряд сходится. При этом, как видно из доказательства, сумма ряда S не превосходит первого члена ряда.

Пример 1. Исследовать, сходится или расходится ряд

Решение. Этот ряд удовлетворяет условиям признака Лейбница:

Следовательно, ряд сходится.

Перейдем теперь к рассмотрению общего случая знакопеременного ряда. Будем предполагать, что в ряде

числа могут быть как положительными, так и отрицательными.

Для таких рядов имеет место следующий достаточный признак сходимости знакопеременного ряда.

Теорема. Если для знакопеременного ряда

сходится ряд, составленный из абсолютных величин его членов

то данный знакопеременный ряд также сходится.

Доказательство. Рассмотрим вспомогательный ряд, составленный из членов рядов (37) и (38):

Таким образом, члены ряда (39) либо равны членам сходящегося ряда (38), либо меньше их. Поэтому ряд (39) сходится на основании признака сравнения (см. п. 5, теорему 1 и сноску на стр. 501).

Умножив все члены сходящегося ряда (38) на получим сходящийся ряд

(см. п. 3, теорема 1). Рассмотрим теперь ряд, являющийся разностью сходящихся рядов (39) и (40)

Этот ряд сходится на основании теоремы 2 п. 3.

Но ряд (37) получается из последнего ряда умножением всех его членов на 2:

Следовательно, ряд (37) также сходится (п. 3, теорема 1).

Пример 2. Исследовать на сходимость знакопеременный ряд (33)

Решение. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда

Этот ряд сходится, как обобщенный гармонический ряд с показателем . Следовательно, на основании доказанного признака сходится и данный ряд (33).

Этот признак является достаточным, но не необходимым. Это значит, что существуют знакопеременные ряды, которые сходятся, в то время как ряды, составленные из абсолютных величин их членов, расходятся.

Действительно рассмотрим ряд

который, очевидно, сходится по признаку Лейбница. Между тем, ряд

составленный из абсолютных величин членов данного ряда является гармоническим и, следовательно, расходится.

Хотя рассмотренные выше ряды (33) и (42) оба сходятся, однако характер их сходимости различен.

Ряд (33) сходится одновременно с рядом (41), составленным из абсолютных величин его членов, тогда как ряд (43), составленный из абсолютных величин сходящегося ряда (42), расходится.

В связи с этим введем следующие определения.

Определение. Знакопеременный ряд абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов

На основании достаточного признака сходимости знакопеременного ряда всякий абсолютно сходящийся ряд будет сходящимся.

Определение. Знакопеременный ряд называется неабсолютно сходящимся, если он сходится, а ряд, составленный из абсолютных величин его членов их расходится.

Возвращаясь к рассмотренным выше примерам, можем сказать, что ряд (33) является абсолютно сходящимся, а ряд ( - неабсолютно сходящимся.